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Dual Optimization for Kolmogorov Model Learning
Using Enhanced Gradient Descent

Qiyou Duan

Abstract—Data representation techniques have made a substan-
tial contribution to advancing data processing and machine learn-
ing (ML). Improving predictive power was the focus of previous
representation techniques, which unfortunately perform rather
poorly on the interpretability in terms of extracting underlying
insights of the data. Recently, the Kolmogorov model (KM) was
studied, which is an interpretable and predictable representation
approach to learning the underlying probabilistic structure of a
set of random variables. The existing KM learning algorithms
using semi-definite relaxation with randomization (SDRwR) or
discrete monotonic optimization (DMO) have, however, limited
utility to big data applications because they do not scale well com-
putationally.In this paper, we propose a computationally scalable
KM learning algorithm, based on the regularized dual optimiza-
tion combined with enhanced gradient descent (GD) method. To
make our method more scalable to large-dimensional problems,
we propose two acceleration schemes, namely, the eigenvalue de-
composition (EVD) elimination strategy and an approximate EVD
algorithm. Furthermore, a thresholding technique by exploiting
the error bound analysis and leveraging the normalized Minkowski
£;-norm, is provided for the selection of the number of iterations
of the approximate EVD algorithm. When applied to big data
applications, it is demonstrated that the proposed method can
achieve compatible training/prediction performance with signifi-
cantly reduced computational complexity; roughly two orders of
magnitude improvement in terms of the time overhead, compared
to the existing KM learning algorithms. Furthermore, it is shown
that the accuracy of logical relation mining for interpretability by
using the proposed KM learning algorithm exceeds 80%.

Index Terms—Kolmogorov model (KM), dual optimization,
gradient descent (GD), scalability, large-dimensional dataset, big
data, low latency, approximate eigenvalue decomposition (EVD).

1. INTRODUCTION

HE digital era, influencing and reshaping the behaviors,
performances, and standards, etc., of societies, commu-
nities, and individuals, has presented a big challenge for the
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conventional mode of data processing. Data consisting of num-
bers, words, and measurements becomes available in such huge
volume, high velocity, and wide variety that it ends up outpacing
human-oriented computing. It is urgent to explore the intelligent
tools necessary for processing the staggering amount of data.
Machine learning (ML), dedicated to providing insights into
patterns in big data and extracting pieces of information hidden
inside, arises and has been used in a wide variety of appli-
cations, such as computer vision [1], telecommunication [2],
and recommendation systems [3]-[6]. Nevertheless, traditional
ML algorithms become computationally inefficient and fail to
scale up well as the dimension of data grows. A major issue
that remains to be addressed is to find effective ML algorithms
that perform well on both predictability and interpretability as
well as are capable of tackling large-dimensional data with low
complexity.

A. Related Work

Data representation, providing driving forces to the advanc-
ing ML-based techniques, has lately attracted a great deal of
interest because it transforms large-dimensional data into low-
dimensional alternatives by capturing their key features and
make them amenable for processing, prediction, and analysis.
The gamut of data representation techniques including ma-
trix factorization (MF) [7], [8], singular value decomposition
(SVD)-based models [9], [10], nonnegative models (NNM) [11],
and deep neural networks [12] have been shown to perform
well in terms of predictive power (the capability of predicting
the outcome of random variables that are outside the training
set). Unfortunately, these techniques perform rather poorly on
the interpretability (the capability of extracting additional in-
formation or insights that are hidden inside the data) because
on the one hand, they are not developed to directly model the
outcome of random variables; on the other hand, they fall under
the black-box category which lacks transparency and account-
ability of predictive models [13]. Recently, a Kolmogorov model
(KM) that directly represents a binary random variable as a
superposition of elementary events in probability space was
proposed [14]; KM models the outcome of a binary random
variable as an inner product between two structured vectors,
one probability mass function vector and one binary indicator
vector. This inner product structure exactly represents an actual
probability. Carefully examining association rules between two
binary indicator vectors grants the interpretability of KM that
establishes mathematically logical/causal relations between dif-
ferent random variables.
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Previously, the KM learning was formulated as a coupled
combinatorial optimization problem [14] by decomposing it
into two subproblems: 1) linearly-constrained quadratic program
(LCQP) and ii) binary quadratic program (BQP), which can
be alternatively solved by utilizing block coordinate descent
(BCD). An elegant, low-complexity Frank-Wolfe (FW) algo-
rithm [15] was used to optimally solve the LCQP by exploiting
the unit probability simplex structure. Whereas, it is known to be
unpromising to find algorithms to exactly solve the BQP prob-
lems in polynomial time. To get around this challenge, relaxation
methods for linear [16], [17], quadratic [18], second-order cone
[19], [20], and semi-definite programming (SDP) [21], [22],
were proffered to produce a feasible solution close to the op-
timal solution of the original problem. Among these relaxation
methods, the semi-definite relaxation (SDR) has been shown to
have a tighter approximation bound than that of others [23], [24].
Thus, an SDR with randomization (SDRwR) method [25] was
employed to optimally solve the BQP of the KM learning in an
asymptotic sense [ 14]. To address the high-complexity issue due
to the reliance on the interior point methods, a branch-reduce-
and-bound (BRB) algorithm based on discrete monotonic opti-
mization (DMO) [26], [27] was proposed. However, the DMO
approach only shows its efficacy in a low-dimensional setting
and starts to collapse as the dimension increases. In short, the
existing KM methods [14], [27] suffer from a similar drawback,
namely, being unscalable. Unfortunately, the latter limitation
hampers the application of them to large-scale datasets, for
instance, the MovieLens 1 million (ML1M) dataset." It is thus
crucial to explore low-complexity and scalable methods for KM
learning.

Duality often arises in linear/nonlinear optimization models in
a wide variety of applications such as communication networks
[28], economic markets [29], and structural design [30]. Simul-
taneously, the dual problem possesses some good mathematical,
geometric, or computational structures that can be exploited to
provide an alternative way of handling the intricate primal prob-
lems by using iterative methods, such as the first-order gradient
descent (GD) [31], [32] and quasi-Newton method [33], [34]. It
is for this reason that the first-order iterative methods are widely
used when optimizing/training large-scale data representations
(e.g., deep neural networks) and machine learning algorithms.
We are motivated by these iterative first-order methods to effec-
tively resolve the combinatorial challenge of KM learning.

B. Overview of Methodologies and Contributions

We present a computationally scalable approach to the KM
learning problem by proposing an enhanced GD algorithm and
an approximate eigenvalue decomposition (EVD) with thresh-
olding scheme based on dual optimization. Our main contribu-
tions are listed below.

® We provide a reformulation of the BQP subproblem of

KM learning to a regularized dual optimization problem
that ensures strong duality and is amenable to be solved

"https://grouplens.org/datasets/movielens/ 1m/
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by simple GD. Compared to the existing SDRwR [14] and
DMO [27], the proposed dual optimization method proffers
amore efficient and scalable solution to KM learning. This
algorithmic approach is ideally suited to the KM learning,
but is not limited thereto, and can be applied to any realistic
problem involving BQP.

® Motivated by the fact that EVD is required at each itera-
tion of GD, which introduces a computational bottleneck
when applied to big data, an enhanced GD that eliminates
the EVD computation when it is feasible is proposed to
accelerate the computational speed. When the elimination
is infeasible and EVD must be computed, we explore an
approximate EVD based on the Lanczos method [35] by
taking account of the fact that computing exact, entire
EVD is usually unnecessary. We focus on analyzing the
approximation error of the approximate EVD. A tractable
thresholding scheme is then proposed to determine the
number of iterations of the approximate EVD by exploiting
the structure of the upper bound on the approximation error
and utilizing the normalized Minkowski ¢1-norm.

e Extensive numerical simulation results are presented to
demonstrate the efficacy of the proposed KM learning al-
gorithm. When applied to large-scale datasets (e.g., ML1M
dataset), it is shown that the proposed method can achieve
comparable training and prediction performance with sig-
nificantly reduced computational cost of more than two
orders of magnitude, compared to the existing KM learning
algorithms. Finally, the interpretability of the proposed
method is validated by exploiting the mathematically logi-
cal relations. We show that the accuracy of logical relation
mining by using the proposed method exceeds 80%.

Notation: A bold lowercase letter a is a vector and a bold

capital letter A is a matrix. A(4, ), A(:, j), trace(A), diag(A),
rank(A), Apnax(A), and oymax(A) denote the (¢, 7)th entry, jth
column, trace, main diagonal elements, rank, largest eigenvalue,
and largest singular value of A, respectively. a(7) is the ith entry
ofa,a(m:n) 2 [a(m),...,a(n)]”, and diag(a) is a diagonal
matrix with a on its main diagonal. (X, Y) is the Frobenius inner
product of two matrices X and Y, i.e., (X,Y) = trace(XTY).
X > 0 indicates that the matrix X is positive semi-definite
(PSD). e; is the ¢th column of the identity matrix of appropriate
size. 1 and O denote the all-one and all-zero vectors, respec-
tively. SV, Rj\_] ,and BY denote the N x N symmetric matrix
space, nonnegative real-valued N x 1 vector space, and N x 1
binary vector space with each entry chosen from {0, 1}, respec-
tively. For S € SN, A(S) £ [A(S), \2(S),..., An(S)]T €
RM*1 where A, (8S) is the nth eigenvalue of S, n=1,..., N
supp(a) = {ila; # 0,i € {1,..., N}} is the support set of a €
R™ and | A| denotes the cardinality of a set A. Finally, £, = &,
indicates that one outcome &£; completely implies another one
Es.

II. SYSTEM MODEL AND PRELIMINARIES

In this section, we briefly discuss the concept of KM and its
learning framework.
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A. Preliminaries

We consider a double-index set of binary random variables
Xy € {0,1},Y(u,i) € S, where S = {(u,4)|(u,i) €U x T}
U=A{1,...,U}andZ = {1, ..., I'} are the index sets of u and
1, respectively) denotes the set of all index pairs. Thus, X, ; can
represent any two-dimensional learning applications (involving
matrices) such as movie recommendation systems [11], DNA
methylation for cancer detection [36], and beam alignment in
multiple-antenna systems [37], [38]. We let Pr(X,; =1) €
[0, 1] be the probability that the event X, ; = 1 occurs. Since the
random variable considered here is binary, the following holds
Pr(X,,; = 1)+ Pr(X,,; = 0) = 1. Without loss of generality,
we can focus on one outcome, for instance, X, ; = 1. Then, the
D-dimensional KM of the random variable X, ; is given by

Pr(X,,; =1) = 0%, Y(u,i) €S, (1)

where 6, € Rf is the probability mass function vector and
W, € BY is the binary indicator vector. Specifically, 6, is
in the unit probability simplex P £ {p € RP?[17p = 1}, i.e,
0, € P, and 9; denotes the support set of X, ; (associated
with the case when X, ; = 1). The KM in (1) is built under
a measurable probability space defined on (€2, &) (€2 denotes the
sample space and &£ is the event space consisting of subsets
of Q) and satisfies the following conditions: i) Pr(E) > 0,
VE € & (nonnegativity), ii) Pr(2) = 1 (normalization), and iii)
Pr(Ue, E;) = Y72, Pr(E;) for the disjoint events E; € &, Vi
(countable additivity) [39]. By (1), X, ; is modeled as stochastic
mixtures of D Kolmogorov elementary events. In addition, note
that Pr(X,; = 0) = 61(1 — ;).

B. KM Learning

Assume that the empirical probability of X, ; = 1, denoted
by pu.i, is available from the training set K = {(u,i)|u €
Ux CU,i € Ix CTI} C S. Obtaining the empirical probabil-
ities {p,, ;} for the training set depends on the application and
context in practical systems; we will illustrate an example for
recommendation systems at the end of this section. The KM
learning involves training, prediction, and interpretation as de-
scribed below.

1) Training: The KM training proceeds to optimize {6, }
and {1, } by solving the ¢5-norm minimization problem:

{63}, {e;} = argmin Y (079, — pui)’

{eu}v{"/’z‘} (u,i)GK
st.O,eP, ¥, cBP V(u,i)e K. (2

To deal with the coupled combinatorial nature of (2), a BCD
method [14], [40] was proposed by dividing the problem in (2)
into two subproblems: i) LCQP:

91(]“) = argmin Gngf)Hu — 205W1([) + 0u, Vu € Uy,
6.cP
3)

T T T T T T
where Q) £ 5 ip, w9, Wil & s, 9 pus,
0u = Y ier, Pai» Tu = {il(u,i) € K}, and 7 is the index of

BCD iterations, and ii) BQP:
! = argmin TSy, — 29TV 4 ) Vi € T
¥, €BP

4)

where SETH) £ eu GELTH)@&TH)T, Vq(,TH) 2 Y e

05f+1)pw~, pi & Zueb{i p? ., and U; = {u|(u,i) € K}. BCD
has been successful in tackling coupled optimization problems
in applications such as the transceiver design in wireless
communications [28], [41]-[43]. The coupling among {0, }
and {1,} in (2) makes BCD an ideal method to alternatively
handle the coupled optimization problem. It has been studied
that the BCD method converges to a local minimum of the
original problem in (2) if a unique minimizer is found for both
blocks, {6, } and {1, } [14], [44].

By exploiting the fact that the optimization in (3) was carried
out over the unit probability simplex P, a simple iterative FW
algorithm [15] was employed to optimally solve (3), while
the SDRwR was employed to asymptotically solve the BQP
in (4) [25]. It is also possible to solve (4) directly without a
relaxation and/or randomization, based on the DMO approach
[27]. However, the DMO in [27] was shown only to be efficient
when the dimension D is small (e.g., D < 8); its computational
cost blows up as D increases (e.g., D > 20).

2) Prediction: Similar to other supervised learning methods,
the trained KM parameters {07}, {17} are used to predict
probabilities over a test set 7 as

Pui 2 05798, V(u,i) € T, 5)

where TNK =¢and TUK = S.

3) Interpretation: KM offers a distinct advantage, namely,
the interpretability by drawing on fundamental insights into
the mathematically logical relations among the data. For two
random variables X, ; and X, ; taken from the training set /C,
ie., (u,7) € K and (u,j) € K, if the support sets of 1 and
7 satisfy supp(ip}) C supp(ep;), then two logical relations
between the outcomes of X, ; and X, ; can be inferred: the
first outcome of X, ; implies the same one for X, ; while the
second outcome of X, ; implies the second one for X, ;, i.e.,
Xuﬂ‘ =1= Xu,j =1 and Xu,j =0= Xu,i =0 [14, Propo-
sition 1]. It is important to note that logical relations emerged
from KM are based on the formalism of implications. Thus, they
hold from a strictly mathematical perspective, and are general.

An implication of the introduced KM learning is illustrated
by taking an example of movie recommendation systems as
follows.

Ilustrative Example: Suppose there are two users (U = 2)
who have rated two movie items (I = 2). In this example,
X,,i =1 denotes the event that user u likes the movie item
i, Yu € {1,2},Vi € {1,2}. Then, Pr(X,; = 1) denotes the
probability that user u likes item ¢ (conversely, Pr(X,, ; = 0)
denotes the probability that user u dislikes item 7). Suppose
D =4 in (1). Then, the four elementary events can represent
four different movie genres including i) Comedy, ii) Thriller, iii)
Action, and iv) Drama. The empirical probability corresponding
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to X, ; = 1 can be obtained by

Tu,i
pu,i é 9 (6)

rIl'l ax

where 7, ; denotes the rating score that user u has provided
for item ¢ and 7y, is the maximum rating score. In a 5-star
rating system (rmax = 5), we consider the following matrix as

an example:
P11 P12 0.8 04:|
) > — , 7

[p2,1 pz,z} [ 0.6 ™

where py 1 is unknown (as in the “*’ entry) and {p11,p1.2,
po,2} constitutes the training set of empirical probability where
K=1{(1,1),(1,2),(2,2)}. By solving the KM learning prob-
lem in (2) for the empirical probabilities provided in (7), one can
find the optimal model parameters, {0} and {4/ } (an optimal
solution to (2)), which is given by

07 =1[0.40.20.10.3)7, 85 =[0.10.30.10.5]7;
Yi=[1011]", ¢5=[0011]"

Then, we can predict p2 1 (7 = {(2,1)}) by using the learned
KM parameters 0 and % as foq = 05" % = 0.7. In this
example, the following inclusion holds supp(v3) C supp(¥)7).
Thus, if a certain user (user 1 or 2) likes movie item 1, this
logically implies that the user also likes movie item 2.

Remark 1: In contrast to the KM in (1), the state-of-the-art
method, MF [7], [8], considers an inner product of two arbitrary
vectors without having implicit or desired structures in place.
While NNM [11] has a similar structure as (1), the distinction is
that NNM relaxes the binary constraints on ), to a nonnegative
box, i.e., %, € [0, 1], and thus sacrifices the highly interpretable
nature of KM. Unlike the existing data representation tech-
niques, the KM can exactly represent the outcome of random
variables in a Kolmogorov sense. As illustrated in Section V,
this in turn improves the prediction performance of the KM
compared to other existing data representation techniques. De-
spite its predictability benefit, the existing KM learning methods
[14], [27], however, suffer from high computational complexity
and a lack of scalability. In particular, the LCQP subproblem,
which can be efficiently solved by the FW algorithm, has been
well-investigated, while resolving the BQP introduces a major
computational bottleneck. It is thus of great importance to study
more efficient and fast KM learning algorithms that are readily
applicable to large-scale problems.

III. PROPOSED METHOD

To scale KM learning, we propose an efficient, first-order
method to the BQP subproblem in (4).

A. Dual Problem Formulation

We transform the BQP subproblem in (4) to a dual problem.
To this end, we formulate an equivalent form to the BQP in (4)
as

min

T T
A 8
x€{+1,71}DX oX +a’x, ®)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

where p; in (4) is ignored in (8), x = 2¢p, — 1 € {+1,-1}7,
Ag=18;, and a = $ST1 — v;. For simplicity, the iteration
index 7 is omitted hereinafter. By introducing X, = xx’ and
X = 1 xT] e S(PHIXDHD) the problem in (8) can be rewrit-

X XU
ten as
min  (Xo, Ag) +a’x, (9a)
X,XO
s.t. diag(Xp) =1, (9b)
X =0, (9¢)
rank(X) = 1. (9d)

Solving (9) directly is NP-hard due to the rank constraint in (9d),
thus we turn to convex relaxation methods. The SDR to (9) can
be expressed in a homogenized form with respect to X as

min  f(X) £ (X, A), (10a)
st. (B,X)=1,i=1,....D+1,  (10b)
X =0, (10c)
T
where A = | 0 (1/2)a ] € SPHUXDHY apd B, =

(1/2)a  Ayp
[01 s Oi—l €; 07;4_1 s 0D+1] € R(D+1)X(D+1). Note that the
diagonal constraint in (9b) has been equivalently transformed to
D + 1 equality constraints in (10b). While the problem in (9)
is combinatorial due to the rank constraint, the relaxed problem
in (10) is a convex SDP. Moreover, the relaxation is done by
dropping the rank constraint.

We further formulate a regularized SDP formulation of
(10) as

. N 1

st.(B;,X)=1,i=1,...,D+1,

X >0, (11)

where v > 0 is a regularization parameter. With a Frobenius-
norm term regularized, the strict convexity of (11) is ensured,
which in turn makes strong duality hold for the feasible dual
problem of (11). In this work, we leverage this fact that the
duality gap is zero for (11) (a consequence of strong duality) to
solve the dual problem. Using a larger regularization parameter
v yields better quality of the solution to (10), but at the cost of
slower convergence. In addition, the two problems in (10) and
(11) are equivalent as v — co. The choice of v will be further
discussed in Section V-A.

Given the regularized SDP formulation in (11), its dual prob-
lem and the gradient of the objective function are of interest.

Lemma 1: Suppose the problem in (11) is feasible. Then, the
dual problem of (11) is given by

max  dy(u) £ —u’1- I (C) 3 (12)
ucRP+? 2
where u € RPT! is the vector of Lagrange multipli-

ers associated with each of the D+ 1 equality con-
straints of (11), C(u) £ —A — Y24 4B, and I, (C(u)) 2
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Algorithm 1: GD for Solving the Dual Problem in (14).

Algorithm 2: Enhanced GD With EVD Elimination.

Input: A, {Bi}iﬁl, D, ug, 7, € (tolerance threshold
value), and I, (maximum number of iterations).
Output: u*.

1: fori=0,1,2,..., I1h,x do

2: Calculate the gradient: V., i (u;).

3: Compute the descent direction:
Aui = —Vui h,y (uz)

4. Find a step size t; (via backtracking line search),
and U;+1 = Uy + tiAui.

3 if ||t;Au,||2 < e then terminate and return
u* = W;41.

6: end if

7: _end for

S 24 max(0, Ai(C(u)))pip?, in which \;(C(u)) and p;,
i=1,...,D 4 1, respectively, are the eigenvalues and corre-
sponding eigenvectors of C(u). The gradient of d.(u) with
respect to u is

Vudy(n) = =1 4+~9[I1; (C(u))], (13)

where @I, (C(u))] = [(By, I1+(C(u))),. .., (Bp1, ILi(
C(u))]” € RPFL
Proof: See Appendix A.

It is well known that d,(u) in (12) is a strongly concave
(piecewise linear) function, thereby making the Lagrange dual
problem (12) a strongly convex problem having a unique global
optimal solution [31]. Furthermore, the special structure of
C(u) of Lemma 1, i.e., being symmetric, allows us to propose
computationally efficient and scalable KM learning algorithms
which can be applied to handle large-scale datasets with low
latency.

B. Fast GD Methods For The Dual Problem

1) GD: The dual problem in (12), having a strongly concave
function d-(u), is equivalent to the following unconstrained
convex minimization problem

min

ueRP+!
with the gradient being V,h,(u) =1 — y@[II1(C(u))]. We
first introduce a GD, which is detailed in Algorithm 1, to solve
(14). Note that, due to the fact that the dual problem in (14) is
unconstrained, a simple GD method is proposed here: indeed,
we would need a projected GD method if there is constraint
included, for which the computational complexity would be
much larger because of the projection at each iteration.

In Algorithm 1, only the gradient of h (u;), i.e., Vy, by (1;),
is required to determine the descent direction. It is therefore a
more practical and cost-saving method compared to standard
Newton methods which demand the calculation of second-order
derivatives and the inverse of the Hessian matrix. Moreover,
Algorithm 1 does not rely on any approximation of the inverse
of the Hessian matrix such as the quasi-Newton methods [45]. To
find a step size in Step 4, we apply the backtracking line search

ho(w) 2 0”14 ZI(C)F, (4)

Input: —A = VAVT {B,}21, D, ug (with equal
entries), 7y, €, and I ,x.
Output: u*.
1. fori=0,1,2,..., . do

2: Calculate the gradient with EVD elimination:
3: if All D + 1 elements of u; are the same then
Phase I:
4: A(C(u;)) = AM(—A) — u; where
A(—A) = diag(A).
5: Find the index set
I)\ = {j|/\](C(ul)) >0,7=1,...,D+ 1}.
6: if ) = () then Phase I-A: VI (u;) = 1.
7: else Phase I-B:
8: Vhy(u;) =1 — @[l (C(w;))],
14 (C(u;))
= Y1, MC@DVENVEDT
9: end if
10: else Phase II:
11: if Apax(—A) + Amax(—diag(u;)) < 0 then
Phase II-A: Vh(u;) = 1.
12: else Phase II-B:
13: C(u,») = VcAcvg,
A(C(u;) = diag(Ac).
14: Vhy(u;) =1 —~yQ[II; (C(w;))],
1L (C(uy))
= Yjer, Ai(C(wi)Ve(:,7) Ve 4)T.
15: end if
16: end if
17: Compute the descent direction:
Auq; = —Vh,y(uq;).
18: Find a step size ¢; (via backtracking line search),
and ;41 = U + tlAllZ
19: if ||¢;Au;|2 < e then terminate and return
u* = Wit1.
20: end if
21: end for

method [46], which is based on the Armijo-Goldstein condition
[47]. The algorithm is terminated when the pre-designed stop-
ping criterion (for instance, ||t; Au;||2 < einStep 5, wheree > 0
is a predefined tolerance) is satisfied. Finally, the computational
complexity of Algorithm 1 is dominated by the EVD of a
(D+1) x (D + 1) matrix, needed to compute Vyh-(u) in
Step 2, which is given as O((D + 1)3).

2) Enhanced GD: In Algorithm 1, an EVD of C(u;)
is required at each iteration to determine II,(C(u;)) and
Vu, by (1;). However, it is difficult to employ EVD per iteration
as they require high computational cost (O(UI(D + 1)3)) when
large-scale datasets are involved (with very large U, I, and D).
It is critical to reduce the computational cost of Algorithm 1 by
avoiding the full computation of EVD or even discarding them.

In relation to the original SDP problem in (10), we can
understand the PSD constraint in (10c) is now penalized as the
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penalty term in h. (), i.e., Z||IL;(C(u))||%. Thus, one of the
key insights we will use is that: 1) if the PSD constraint is not sat-
isfied, the penalty term equals to zero, simplifying the objective
function as h,(u) = u”'1; in this case, the gradient is simply
Vuhy(u) = 1, eliminating the computation of EVD, and ii) if
the PSD constraint is satisfied, the penalty term becomes nonzero
and it requires the computation of EVD to find out Vh,(u).
This fact leads to the following proposition showcasing the rule
of updating u;; for the enhanced GD.

Proposition 1: The enhanced GD includes two cases depend-
ing on the condition of the PSD constraint as

Case A: if the PSD constraint does not meet
= Wiy =u; — ;1
Case B: if the PSD constraint meets
= Wit = U — 4V, by (W)

The key is to check if the PSD constraint in Proposition 1 is
satisfied or not without the need of computing EVD. We propose
a simple sufficient condition, based on the Weyl’s inequality
[48], as demonstrated in the proposed Algorithm 2.

In Algorithm 2, we focus on modifying Step 2 in Algorithm 1
by using an initial ug with equal entries (for instance, ug = 1)
and exploiting the fact that VA, (u;) = 1 if C(u;) is not PSD
(Case A in Proposition 1) to reduce the computational cost
of EVD. Step 4 in Algorithm 2 is due to the fact that the
kth eigenvalue of A + oI (a € R) is Ap(A) + «. One of the
key insights we leverage is that the choice of the sequence
of gradient directions, i.e., Vy,hy(u;), ¢ =0,1,..., does not
alter the optimality of the dual problem in (14). We approach
the design of ug with the goal of eliminating the computation
of EVD to the most extent. Moreover, in Step 11 of Algo-
rithm 2, the condition Apax(—A) + Apax(—diag(u;)) <0 =
Amax(C(u;)) < 0 (Case A in Proposition 1), holds because of
the Weyl’s inequality [48]. Note that we accelerate the original
GD by reducing the computation of EVD from two different
perspectives: one is from a better designed initial point uy and
another one is taking into acount the charateristics of C(u;),
i.e., C(u;) is PSD or not. The EVD of C(u;) is required only
when both the conditions “all the elements of u; are the same”
and “Apax(—A) 4+ Anax( —diag(u;)) < 07 are violated, as in
Phase II-B. The effectiveness of the proposed enhanced GD will
be validated by using numerical results in Section V.

Notice that Step 2 in computing Vi, h(u;) of Algorithm
1 has been transformed into two different phases (each phase
includes two sub-phases) in Algorithm 2. Algorithm 2 executes
the four sub-phases in order and irreversibly. To be specific, the
algorithm first enters Phase I at the initial iteration and ends up
with Phase II. Once the algorithm enters Phase II, there is no
way to return back to Phase I. The duration of four sub-phases
varies with the characteristics of C(u; ), which depends on D and
the dataset. An example will be taken to illustrate the duration
of phases in Algorithm 2 in Section V-A. Algorithms 1 and 2
are based on GD, and thus the enhanced GD does not alter the
convergency of Algorithm 1 [31].

Proposition 2 (Convergence Rate of the Enhanced GD): Let
u* be the optimal solution to the strongly convex problem in
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=O=0riginal GD (Algorithm 1), 4=10"

—0%—Enhanced GD (Algorithm 2), 1=10"
-4 -Enhanced GD (Algorithm 2), =102
.., | "% Enhanced GD (Algorithm 2), 1=10°

Iterations (i)

Fig. 1. Convergence rate comparison of GD in Algorithm I and the enhanced
GD with EVD elimination in Algorithm 2 when D = 4.

(14). Then if we run Algorithm 2 for ¢ iterations, it will yield a
solution A (u;) which satisfies

hoy(w;) — hy(u*) <O(c"), 0<c<1,i=1,2,...

Intuitively, this means that the enhanced GD is guaranteed to
converge with the convergence rate O(c?).

Remark 2: Both Algorithms 1 and 2, which are based on the
original GD [31], [32], result in the same update sequences {u; }.
This phenomenon is captured in Fig. 1 , in which the optimality
gap (i.e., h(u;) — hy(u*)) as a function of the iteration number
1 is depicted for Algorithms 1 and 2. In terms of flops, however,
Algorithm 2 is more efficient than Algorithm 1. This leads to a
dramatic reduction in the running time of Algorithm 2 since we
mainly move on the direction obtained without the computation
of EVD. Furthermore, the asymptotic error bound in Proposition
1 is unassociated with ~, in which the bound converges to zero
as ¢ tends to infinity. This asymptote is captured by the slop
of the error decrease as log(h~(u;) — hy(u*)) < O(log(c) - ),
where log(c) < 0 defines the asymptotic slop and is independent
of ~v. We utilize simulation curves to show the effect of v on the
convergence rate of the enhanced GD in Fig. 1. It can be observed
that a larger -y leads to a slower convergence (i.e., a larger shift of
the red curves to the right). Nevertheless, v needs to be chosen
by considering the tradeoff between the training performance of
KM and the computational cost as illustrated in Section V-A.

C. Randomization

The solution to the dual problem in (14) (or equivalently
(12)) produced by Algorithm 2, is not yet a feasible solution
to the BQP in (4). A randomization procedure [49] can be
employed to extract a feasible binary solution to (4) from the
SDP solution X* of (11). One typical design of the random-
ization procedure for BQP is to generate feasible points from
the Gaussian random samples via rounding [50]. The Gaus-
sian randomization procedure provides a tight approximation
with probability 1 — exp(—O(D)), asymptotically in D [51].
By leveraging the fact that the eigenvalues and corresponding
eigenvectors of IT; (C(u)) can be found by Steps 13 and 14 of
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Algorithm 3: Randomization.

Input: A, 11, (C(u*)) = VLA, VL, D, v, and I,.q (the
number of randomizations).

Output: {ﬂ (an approximate solution to the BQP in (4)).

I: ObtainL =V, \/yA| and LL” = X*.

2: for?=1,2,...,1.4,q do

3: Generate an independent and identically
distributed (i.i.d.) Gaussian random vector:
&~ N(OvID-‘rl)' -
Random sampling: £, = L&,.
Discretization: X, = sign(&,).

end for

Determine £* = argmin,_; ;  X; AXy.

Approximation: X = X« (1) - X« (2: D + 1) and

B =(%+1)/2.

A A

Algorithm 4: Dual Optimization for KM Learning With
Enhanced GD.

Input: Uy, Tic, K, {Pu,i } (u,i)ek> and Ipcp. Initialize
{0&1) € P}ueu;c~

Output: {OZ}UGU/{’ {'w:}iGIK'

1 fOI‘T:LQ,...,IBCDdO

2 Update {4\ }icr, :

3 for i € Zx- do

4: Obtain u} from Algorithm 2.

5: Recover z,bgT) from Algorithm 3.

6: end for

7 Update {8} ey, :

8: for u € Ui do

9: Obtain 0787) from the FW algorithm [15].
10: end for
11: end for
12: return {0* = @{/>c0)}, , and

{'(;b: = d]EIBCD) }iEIK, .

Algorithm 2, we have
X* =411 (C(u*)) =9V4AL VT =LLT,

where the first equality follows from (23) and (26), IT, (C(u))
= V+A+VI, and L =V, /vA . A detailed randomization
procedure is provided in Algorithm 3.

In Step 8 of Algorithm 3, the D-dimensional vector X is first
recovered from a (D + 1)-dimensional vector X« by consider-
ing the structure of X* in (9), and then used to approximate the
BQP solution based on (8). Also note that the randomization
performance improves with I;,,q. In practice, we only need
to choose a sufficient but not excessive I,,,q (for instance,
50 < I.anga < 100) achieving a good approximation for the BQP
solution. Moreover, its overall computational complexity is
much smaller than the conventional randomization algorithms
[14], [49], [50] because our proposed Algorithm 3 does not
require the computation of the Cholesky factorization.

10? T T
——Enhanced GD
——Enhanced GD with an Initial Step Size
1000
o
2
=
| 1072
Ei
=
<
107
107°

Iterations ()

Fig.2. Convergence rate comparison of the enhanced GD with EVD elimina-
tion in Algorithm 2 and that with an initial step size when D = 4.

D. Overall KM Learning Algorithm

Incorporating Algorithm 2 and Algorithm 3, the overall KM
learning framework is described in Algorithm 4.

Note that the index of BCD iterations 7 that has been omitted
is recovered here and Igcp denotes the total number of BCD
iterations for KM learning. In Algorithm 4, the BCD method is
adopted to refine {¢§T)}iezK and {67}y, until it converges
to a stationary point of (2). In fact, the proof of convergence (to
stationary solution) for Algorithm 4 is exactly the same as that
of Algorithm 1 in [14]. In practice, we can use Ipcp to control
the termination of Algorithm 4.

IV. APPROXIMATE EVD AND ERROR ANALYSIS

In this section, several techniques are discussed to further
accelerate Algorithm 2.

A. Initial Step Size

A good initial step size tg is crucial for the convergence speed
of the enhanced GD. In Phase I-A of Algorithm 2, we have

MC(uir1)) = A=A) —uip1 = A(A) —u; + ;1.

If Apax(C(u;q1)) >0, the following holds ¢; > u; —
Amax(—A) where u; £ u;(1) = --- = u;(D + 1). Therefore,
in the first iteration of Phase I-A, we can set an appropriate step
size to > up — Amax(—A) so that C(u;) = —A — diag(u;)
has at least one positive eigenvalue, where u; = ug — to1.
With the above modification of Algorithm 2, we can reduce the
execution time spent in Phase I-A, and thus, the total number
of iterations required by the enhanced GD can be reduced as
shown in Fig. 2. Moreover, the choice of ug does not affect the
overall performance in terms of the computational cost.

B. Approximate EVD

Compared to the original GD in Algorithm 1, the enhanced
GD in Algorithm 2 has reduced the costly EVD substantially.
Nevertheless, the EVD is still necessary in Algorithm 2 when the

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on May 26,2022 at 16:56:55 UTC from IEEE Xplore. Restrictions apply.



970

Algorithm 5: Modified Lanczos Algorithm.
Input: C(u;), D, and § (threshold value). Choose an initial
unit-norm vector p; € RP+L Set b1 =0,po =0, and

H,, = 0(py1)x(p+1) (O(p41)x(p+1) denotes the
all-zero matrix of dimension (D + 1) x (D + 1)).

Output: P,,, = [p1,p2,...,Pm) and H,,.

1I: forj=1,2,...,D+1do

2: w; = C(wi)p; — Bjp;-1-

3: o = (w;,p;) and H,,,(J, j) = o (o forms the

main diagonal of H,,).

4 wj = w; —a;p; and i1 = [[will2.

5: if ;41 < 0 then terminate and return

6: m =jand H,, = H,,(1: m,1:m).

7: else

8: Hpy (4,7 +1) = Hn(j +1,5) = Bjy1 (Bjna

forms the super- and sub-diagonal of H,,).

9: Pj+1 =W;/Bj41.
10: end if
11:  end for

algorithm enters into Phase II-B. In order to further accelerate
the algorithm, we employ and modify the Lanczos method to nu-
merically compute the approximate EVD of C(u;) in Algorithm
2.

The Lanczos algorithm [52] is a special case of the Arnoldi
method [53] when the matrix is symmetric. In principle, it is
based on an orthogonal projection of C(u;) onto the Krylov
subspace K, 2 span{p, C(u;)p,...,C(u;)" 'p} where m
denotes the dimension of Krylov subspace. An algorithmic
description of a modified Lanczos method is presented in Al-
gorithm 5.

Different from the Arnoldi method, the matrix H,,, € R"*™
constructed by Algorithm 5 is tridiagonal and symmetric, i.e.,
the entries of H,, in Algorithm 5 satisfy that H,,,(,j) = 0,1 <
i<j—liand H,, (5,5 +1)=H,(+1,5),j=1,2,...,m.
Also, Algorithm 5 iteratively builds an orthonormal basis, i.e.,
P,, € RIPHD>™ for . such that Pl C(w;)P,, = H,, and
Pr’P,, =1, where m < D + 1. Let (¥;,q;),i=1,...,m,
be the eigenpairs of H,,. Then, the eigenvalues/eigenvectors of
C(u;) can be approximated by the Ritz pairs (¢;, P,,,q;), i.e.,

With the increase of the dimension of Krylov subspace m, the
approximation performance improves at the price of additional
computations. Thus, in practice, we adopt the value of m bal-
ancing the tradeoff between the accuracy of approximation and
the computational complexity.

C. Analysis of Approximation Error and Thresholding Scheme

In this subsection, we analyze the approximation error of
the approximate EVD and propose a thresholding scheme for
selecting an appropriate m in Algorithm 5. The main results are
provided in the following lemmas.
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Lemma 2: Let (Y;,q;) be any eigenpair of H,,, and (\; =
¥4, v; = Ppq;) in (15) is an approximated eigenpair (Ritz pair)
of C(u;) in Algorithm 5. Then the following holds:

i) The residual error 7.(C(u;)V;, A\iv;) 2 [|C(uy)v; —
AiVi|2 is upper bounded by

Te(C(W) Vi, \ivi) < B

ii) The maximum approximation error of eigenvalues of C(u;)
is bounded by

16)

max | \; — Ag| < B, i € {1,...,m}, (17)
where ); is the associated true eigenvalue of C(u;).

iii) The minimum approximation error of eigenvalues of
C(u;) is bounded by

m11n|)\,7)\7| §B7,,+1\ql(m)|, RS {1,,m} (18)
Proof: See Appendix B.

Lemma 2 indicates that the error bounds of the approximate
eigenvalues of C(u;) by using the approximate EVD in Algo-
rithm 5 largely depends on f3,,,+1. Indeed, the upper bounds in
(17) and (18) are quite tight as will be seen in Section V. Inspired
by Lemma 2, finding an upper bound of 3,,, 1 that only depends
on the trace of C(u;) is of interest.

Lemma 3: B,,+1 in Algorithm 5 is upper bounded by

Bm—i—l S 2m ((O'max,UB - O'Inax,LB) + a'max,Minkowski) 5

19)
Ta u; race u;)?
whezre Omax,UB = : Ce[()(i(l D 4 ((= (DCJ£1 D
trace? (C(u,)) (D + 1)2) . D)% and Omax.LB = trace](j(}r(lui)) +
race u; 2 l'f:lCe2 u; =
(" (DCJﬁll) ) _ ¢ (D(fl();')))/D)é are the upper and lower
bounds on the largest singular value of C(u; ), respectively,” and

A N D+1 ~D+1 N .
Omax,Minkowski = P17 2or—1 2.1 |C(¢,7)|is a normalized

Minkowski ¢1-norm of C(u;) (C(¢,j) denotes the (¢, 7)th
entry of C(u;) for simplicity).
Proof: See Appendix C.

Lemma 3 gives us an upper bound of 3,,,1 that does not
require a computation of EVD and can be readily employed as a
stopping condition in Step 5 of Algorithm 5. In particular, it pro-
poses to use the normalized Minkowski £1-norm 6 max Minkowski-
Notice that we introduced 6 yax, Minkowski in Appendix C (Proof
of Lemma 3) to further upper bound o, (C(u;)) in (31), which
gives a good approximation of oy,,x(C(u;)). It is important to
note that the upper bound in (19) depends only on the traces and
the absolute value of entries of C(u;), whose computational
cost is extremely low compared to that of EVD. Moreover, in
Appendix C, a useful property of 6 max Minkowski 15 leveraged,
Hamely, Omax,LB S (}max,Minkowski § Omax,UB [54]

Lemma 3 motivates us to adjust the number of iterations m
of Algorithm 5 by proposing a low-complexity yet reasonable
threshold, which exploits the structure of the upper bound on

2For the symmetric matrix C(u;) € S(PTDX(P+D) g largest singular
value omax(C(u;)) is the same as the absolute value of its eigenvalue with
the largest modulus.
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Bm+1 in (19). Therefore, we propose to use a threshold value
provided as

1

0= DD

((Umax,UB - O'max,LB) + OA’max,Minkowski%
(20)

where a > 0 is a controlled parameter. Unlike the prior works
which choose m in a greedy manner, this thresholding scheme
determines m by controlling the approximation error below d,
leading to a balance between the accuracy of approximation and
the computational complexity. This will be further investigated
in Section V.

V. NUMERICAL RESULTS

We now present the simulation results demonstrating the
superiority of the proposed methods compared with the con-
ventional KM (e.g., the KM with SDRwR [14] and DMO
[27]) and existing data representation techniques (e.g., NNM
[11], MF [7], and SVD++ [9]) in terms of the computational
cost, training and prediction performance, and interpretabil-
ity. Three datasets for experiments are mainly considered, in-
cluding (D1) an artificially generated toy dataset (for train-
ingonly): K = {(u,4)|u € {1,...,20},i € {1,...,40}} (U =
20,1 = 40) and {pu,i}(u,ijex are independent and uniformly
distributed on the unit interval [0,1], (D2) the MovieLens 100K
dataset’ (ML100K) with U = 943 users and I = 1682 movie
items, and (D3) the MovieLens 1 million dataset (MLIM)
with U = 6040 users and I = 3900 movie items. For latter
two MovieLens datasets, we divide each one of both into 80%
for training and the remaining 20% for testing. The empirical
probabilities of the training set, i.e., {py;}, are obtained by
Puyi = Tui/Tmax. (4,1) € K, as in (6).

A. Computational Cost and Training Performance

We evaluate the computational cost and training performance
of the proposed KM learning with the enhanced GD (i.e., Algo-
rithm 4). Throughout the paper, the computational cost is calcu-
lated by averaging the total running time in seconds (measured
by “cputime” in MATLAB running on a PC with an Intel Core i7-
77003.6 GHz CPU and 16 GB RAM) over the number of BCD it-
erations. We adopt the training root-mean-square error (RMSE),
whichis defined as Eyin = \/ﬁ > (uiyekc Pui — 0T apr |2, as
a metric.

We first investigate the effect of the regularization parameter
v in (11) on the KM learning performance. In Fig. 3, the training
RMSE is evaluated under different parameter settings of ~y for
the two proposed GD-based methods based on the artificial
dataset (D1). It can be seen from Fig. 3 that the larger the ~
value, the better the training performance of KM is, but this
is achieved with an increased computational cost as shown in
Table I. Moreover, it is indistinguishable in terms of the training
error when 7 is increased from 10? to 102. It is thus a tradeoff
between accuracy and complexity in the choice of . We choose
~ = 100 and fix it for subsequent numerical experiments.

3https://grouplens.org/datasets/movielens/100k/

0.55

—o—KM with Enhanced GD (v=10")
-6~ KM with Enhanced GD (y=10%) |
~+0--KM with Enhanced GD (y=10%)
—o—KM with Original GD (y=10")
-0~ KM with Original GD (y=102)
0 KM with Original GD (v=10°)

ot
o

o

~

o
T

o
S
T

Training RMSE
o
&

©
w
T

o

o

o
T

0.2} o

* ..»:.-Q.._,‘"QE"

< 3
Y i Y s
5 6 7 8
BCD lterations (7)

1 2 3 4

Fig.3. Theeffect of 7y in (11) on the KM training performance when D = 16.

TABLE I
TIME CONSUMPTION (IN SECONDS) COMPARISON OF SOLVING THE BQP
UNDER DIFFERENT y FOR (D1) WHEN D = 16

Y 1 2 3
Algorithm 10 10 10
Original GD 6.51 x 1071 1.24 2.79
Enhanced GD 6.79 x 1072 | 1.53 x 107! | 2.62 x 10!
TABLE II
THE DURATION OF FOUR SUB-PHASES IN ALGORITHM 2 BASED ON (Dl) WHEN
D=38
Phase I-A | I-B | II-A | II-B

Duration (%) | 37 | 9 8 46

TABLE III
TIME CONSUMPTION (IN SECONDS) COMPARISON OF THE KM LEARNING
(D=38)
Subproblem
Dataset Algorithm 1. LCQP 2. BQP
SDRwR 1.51 x 10T 7.36
DMO 1.43 x 107! 1.85
(€329 o -1 -1
Original GD 1.41 x 10 1.12 x 10
Enhanced GD 1.37 x 107! | 8.60 x 102
SDRwR 7.05 3.08 x 1012
(D2) DMO 7.11 7.80 x 10+!
Original GD 7.11 2.24 x 10*1!
Enhanced GD 7.10 2.19 x 10+1

In particular, we take the case when D =8 and (D1) is
considered as an example to show the duration of each phase
in the enhanced GD (Algorithm 2). In Table II, the duration of
each phase is measured by using the ratio between the number
of iterations spent by the phase and the total number of iterations
required by Algorithm 2 and averaged by taking 10* realizations
of (D1). Observed from Table II, 54% of iterations (including
Phase I-A, I-B, and II-A) of Algorithm 2 do not require the
computation of EVD, which results in a significant reduction
of the computational cost compared to the original GD as will
be shown in Table IV (i.e., one or two orders of magnitude
improvement in terms of the time overhead).
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TABLE IV
TIME CONSUMPTION (IN SECONDS) COMPARISON OF SOLVING THE BQP
Dataset . b 4 8 12 20 50 100
Algorithm
SDRwR? 7.11 7.36 7.62 - - -
DMO* 1.21 x 1071 1.85 1.00 x 1013 - - -
®1) Quasi-Newton® - - - 1.91 1.76 x 10*! | 8.04 x 107!
Original GD 816 x 1072 | 1.12x 107! | 1.32 x 10! 1.47 1.48 x 107! | 6.76 x 10*?
Enhanced GD (with exact EVD) 810 x 1072 | 8.60 x 1072 | 1.07 x 10~ | 1.63 x 10~ | 5.34 x 10~! 2.56
Enhanced GD (with approximate EVD & thresholding)® - - - 1.55x 1071 | 1.98 x 10~! | 2.87 x 10~}
SDRwR? 2.99 x 1072 [ 3.08 x 1072 | 3.18 x 1072 - - -
DMO? 2.02 x 1071 | 7.80 x 10+t | 7.57 x 1013 - - -
(D2) Original GD 2.14 x 1071 | 2.24 x 10! | 2.41 x 10T | 1.02 x 10*2 | 5.53 x 1072 | 5.10 x 1073
Enhanced GD (with exact EVD) 2.10 x 1071 | 2.19 x 10! | 2.30 x 10T | 2.67 x 10T | 5.49 x 107! | 2.59 x 1072
Enhanced GD (with approximate EVD & thresholding)® - - - 2.58 x 1071 | 3.20 x 10t | 3.87 x 10+!
(D3 Enhanced GD (with exact EVD) - 588 x 1072 | 6.0l x 1072 | 8.14 x 1072 - -
Enhanced GD (with approximate EVD & thresholding) - 5.84 x 1072 | 5.92 x 1072 | 6.89 x 10*2 - -

2The missed entries (‘-") are due to the extraordinary high computational cost of the SDRwR and DMO when D is large.

bFor the quasi-Newton method, we utilize (D1) and focus on the cases when D is large.

“The missed entries exist because we focus on evaluating the performance of the enhanced GD with approximate EVD & thresholding when D is large.
dFor the large-scale (D3), our focus has been switched to the proposed scalable enhanced GD and the simulations are done only for D = 8,12, 20.

Table III demonstrates the computational complexity of the
overall KM learning (LCQP + BQP) on the datasets (D1) and
(D2), respectively, when D = 8. In particular, the FW algorithm
is fixed for solving the LCQP while different algorithms are
applied to solving the BQP. It reveals that the computational cost
of solving the LCQP in (3) via the FW algorithm is negligible
compared to that of the BQP in (4), especially, via DMO or
SDRwR. It can be seen that enhanced GD results in improved
time complexity while it is clear that SDRwR and DMO are
not scalable even for (D2), ML100K. The time complexity for
solving the BQP with the varying D can be found in Table IV.
Seen from Table IV, the DMO shows benefits when D is small,
but its computational cost blows up as D increases since the
DMO is based on the branch-and-bound, which is very close to
the exhaustive search in the worst case. For our proposed meth-
ods, the improvement on the computational cost of the enhanced
GD compared to the original GD is marginal when D is small.
However, as D grows, the benefit of the enhanced GD becomes
significant. Fig. 4 displays the training RMSE comparison,
which demonstrates that the proposed enhanced GD achieves
similar, good training performance to the other approaches while
reducing the computational complexity by several orders of
magnitude as shown in Table IV. Furthermore, we compare the
performance between the quasi-Newton method [55] and our
proposed first-order methods based on (D1). It can be seen from
Fig. 5 that the KM with quasi-Newton method achieves similar
training performance as the gradient-based methods, while it
consumes more computation time even compared with the orig-
inal GD as shown in Table IV. This is due to the fact that, in
addition to calculating the gradient V,, b (u;) as in Algorithm
1, the quasi-Newton methods need to compute the approximated
inverse of the Hessian matrix H ~ (V2 h,(u;)) " to obtain the
descent direction (Au; = —HVy, A, (u;)).

Next, we evaluate the performance of the enhanced GD
with approximate EVD and thresholding technique presented
in Section IV-C and compare it with Algorithm 2 (i.e., the
enhanced GD with exact EVD) in Table IV and Figs. 6-7. The
computational cost of the enhanced GD with approximate EVD
and thresholding can be reduced significantly compared to that
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Fig.4. Training RMSE vs. BCD iterations (7 in Algorithm 4): (a) the artificial
dataset (D1), (b) ML100K (D2).

of exact EVD, especially when D is large. It is worth noting that
the time overhead of the enhanced GD with approximate EVD
and thresholding does not increases substantially compared to
the original GD (even the enhanced GD with exact EVD) as D
grows from D = 20 to D = 100 for (D2). The same trend is
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Fig. 5. KM training performance comparison between the quasi-Newton
method and the proposed first-order methods based on (D1).

——0On1
—A—max; [\, — X\
e B |gi(m)|
e min; [ A — Aif
~--0(a=2)

Approximation Error

1071
2 4 6

Fig. 6. Approximation error and upper bounds of the approximate EVD with
thresholding when D = 12.

observed for (D3). In Fig. 6, we show the upper bounds of the
approximation error of the approximate EVD with respect to m.
It demonstrates that (3,11 and B,,,41|¢;(m)| in Lemma 2 pro-
vide tight upper bounds of max; |A; — 5\7| and min; [A; — 5\,|,
respectively. It also shows that the threshold value ¢ in (20),
based on Lemma 3, guides a good choice of m. For instance
of Fig. 6, the approximate EVD terminates when m = 5 (the
point 3, +1 < d) with the approximation error of the dominant
eigenvalue far below 10~°. Moreover, as depicted in Fig. 7, the
training performance of the approximate EVD with thresholding
is very close to that of the exact EVD.

B. Prediction Performance

We assess the prediction performance of the proposed meth-
ods against the existing methods, including NNM [11], MF [7],
and SVD++ [9], based on the ML100K (D2) and the MLIM
(D3) datasets. We adopt the normalized RMSE (NRMSE) as a

973
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Fig. 7. Training RMSE vs. BCD iterations of the enhanced GD with exact
EVD and approximate EVD with thresholding: (a) the artificial dataset (D1), (b)
MLI100K (D2), and (c) ML1M (D3).

metric, which is given by

*T | %
\/ﬁ E(u,i)eT(pu,i — 0 r)?,
for KM and NNM
M\/ﬁ Z(u,i)eT(ru,i — Fui)?,
for MF and SVD++

A
Elest, NRMSE =

i

where 7max — Tmin = 5 — 1 = 4 and 7, ; is the predicted rating
score via MF or SVD++. The above normalization, which scales
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TABLE V
PREDICTION PERFORMANCE EVALUATION (NRMSE COMPARISON) BASED ON (D2) AND (D3)

Dataset Algorithm D 4 8 16 24
KM-Enhanced GD 0.1978 0.1963 0.1946 0.1891
(Algorithm 4) (A =10,;, =0) | (A =30, p1; =0) (A =40, 1, =0) (A =60, 1; =0)
KM-Enhanced GD 0.2045 0.1999 0.1961 0.1914
D2) with approximate EVD & thresholding | (A, = 10,1, =0) | (A, =30, u; =0) (A = 60,1, =0) (A =60, 1; = 0)
NNM 0.1944 0.2255 0.2057 0.2118
MF 02292 0.2287 (k = 10) - 0.2269 (k = 40)
SVD++7 0.2284 02277 (k = 10) 0.2270 (k = 20) 0.2266 (k = 50)
KM-Enhanced GD 0.1812 0.1768 0.1716 0.1629
(Algorithm 4) M =0, =2) | Ay =10, =1.5) | (Au =20, = 1.5) | (A =30, 115 = 2)
KM-Enhanced GD 0.2478 0.1812 0.1765 0.1684
D3) with approximate EVD & thresholding | (A, = 10,;, =2) | (A =10, 0, =0.5) | (A = 10,5, =4) | (Ay = 10, u; = 2.5)
NNM 0.1798 0.1776 0.1765 0.1758
MF - 02143 (k = 10) - -
SVD++9¢ - 02130 (k = 10) 02128 (k = 20) -

AThe results of MF and SVD++ are taken from the following repository: http://www.mymedialite.net/ examples/ datasets.html.
©The missed entries (‘-") are due to the unavailability of the corresponding RMSE result of the repository.

by 1/("max — Tmin) ensuring that the predicted values of all
the different methods are contained in [0,1], is widely used
in ML [14]. The NRMSE results of prediction on (D2) and
(D3) are provided in Table V. In Table V, A\, and p; are two
hyperparameters to mitigate overfitting by using cross validation
[14]. Specifically, the value of (A, p; ) in each entry indicates the
best parameter pair associated with corresponding method and
D. To ensure a reasonable comparison, the size of factorization
for MF and SVD++, i.e., k, is chosen to be as close as possible to
D. It reveals that the KM with enhanced GD shows significantly
better prediction performance compared to the benchmarks and
the predication error gap between this method and the bench-
marks improves with increasing D. This is attributed to the
advantageous nature of KM that being an accurate model in a
mathematical sense and rooted in probability theory, while other
benchmarks are based on intuition.

C. Interpretability via Logical Relation Mining

In Section II-B3, we have briefly introduced the interpretabil-
ity of KM. In order to exploit the logical relations between
random variables X, ; and X, ; ((u,i) € K and (u,j) € K)
based on the optimized KM parameters t; and ’(/J;, Vi, j € Ik,
an indicator matrix of the logical relations, N € B‘IK"‘X'IK', also
known as an adjacency matrix [14], can be built as

1, if supp (7) C supp (¢7)
0, otherwise

NG9 ={ ,
where the nonzero entry N (4, j) = 1 shows that X, ; and X, ;
are coupled and mutually influencial. Constructing N allows us
to further evaluate how much X, ; influences or is influenced by
Xu,j» VJ € Ix, via introducing the normalized influence score
[14] as

1

=7 > N(i,j), Vi € I

JE€Ix

Si 2y

-
d

o
©

—=e KM with Enhanced GD
[ | —% KM with SDRwWR

o
©

o
3

o
o

°
~

o
w

Normalized Influence Score
o
(9]

o
S

°
o

o
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Index of ltem

1200 1400 1600

Fig. 8. Normalized influence score for two different algorithms on the
MLI100K dataset (D2) when D = 8.

Stated differently, ¢; counts the (normalized) number of rela-
tions that X, ; is logically connected to. In particular, ¢; =1
denotes a maximally supported random variable, i.e., ] =1
and supp(e);) C supp(¢p;) holds Vj € .

We display the normalized influence score, i.e., g; in (21),
mined by two KM learning algorithms including the proposed
KM with enhanced GD (Algorithm 4) and previous KM with
SDRwR [14, Algorithm 1], for the ML100K dataset (D2). In
Fig. 8, we find that the results of logical relation mining are quite
similar for the above two algorithms. However, the proposed
KM with enhanced GD offers an order of magnitude reduction
in the computational complexity, compared to the KM with
SDRwR [56]. Furthermore, we confirm the efficacy of logical
relation mining of Algorithm 4 by identifying the set of items
corresponding to ¢; = 1, as in Table VI. Theoretically, if a user
likes one of these items, then the user likes all other items in
the training set. In Table VI, the first column shows the item
index with ¢; = 1, while the second column lists the user index
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TABLE VI
ACCURACY OF LOGICAL RELATIONS MINING FOR THE ML 100K DATASET (D2)

item index with ¢; = 1 | user index | # of items rated | accuracy
1201 90 164 93.29%

146 19 84.21%

1293 489 109 80.73%

519 49 81.63%

244 117 86.32%

1467 886 240 80.00%

1599 437 238 82.77%

in the training set who have rated the corresponding item. The
total number of items rated by the user is shown in the third
column. We calculate the accuracy of logical relation mining by
setting a threshold to the empirical probability of the training
set, i.e., py,; > 50%, indicating that the user w likes the item
1. For instance, the item of index 1201 has been rated by the
user of index 90 and this user has rated 164 items in total. By
checking the empirical probabilities of the ML 100K dataset, we
find that there are 153 items with p,, ; > 50%. As observed from
Table VI, the accuracy of logical relation mining by using the
KM with enhanced GD is above 80%.

VI. CONCLUSION

In this paper, we presented a novel KM learning algorithm
by using an enhanced GD approach based on dual optimization.
To be specific, the BQP subproblem of KM learning was refor-
mulated as a regularized dual optimization problem of strong
convexity, which can be solved by GD. Considering the demand
of scalability and the drawback of traditional GD due to a high
reliance on the computation of EVD, we proposed an efficient
enhanced GD with EVD elimination. Furthermore, a numerical
approximate EVD was adopted to extract the spectra of sym-
metric matrices with low computational complexity. Inspired
by the approximation error analysis, we explored the tractable
bound which depends only on the traces and the normalized
Minkowski #1-norm, and then proposed a thresholding scheme
for the approximate EVD. The proposed methods were applied
to different datasets and numerical results demonstrated their
superiority compared to other benchmarks in terms of computa-
tional cost, training/prediction performance, and interpretability.

APPENDIX A
PROOF OF LEMMA 1

Proof: The Lagrangian of the primal problem in (11) is given
by

L(X,u,D) =
D+1

1

where u € RP*! and D > 0 are Lagrangian multipliers. Since
the problems in (11) and (22) are feasible, strong duality holds
and Vx £(X*, u*, D*) = 0, where X*, u*, and D* are optimal

solutions to (22). Then we have

D+1
o (D* —A-D uﬁBi) =4(D* +C(u"), (23)
i=1
where C(u*) = —A — Z?:ng urB;. Substituting X* in (22),
we obtain the dual formulation

T g 2
ma; —u 1——=||D+ C(u)|%. 24
L JID+CwlF @
For a given u, the dual problem in (24) is equivalent to
. 1 2
min o D+ C(u)|%. (25)

The solution to (25) is D* = II, (—C(u)). Due to the fact that
C(u) =11, (C(u)) — IIL (—C(u)), it follows

D* + C(u) =11 (C(u)).

Thus the dual formulation in (24) can be simplified to (12).
We take the first-order derivative of d., (u) in (12) with respect
to u and obtain

V) = — 1=, (Gl (CO)I )

= —1+~Q[L(C(u))],

where the last equality is due to Vy(i|II(U)|%) =
Vu(3 N (max(0, \u,))?) = I (U), where Ay ; is the ith
eigenvalue of U € R This concludes the proof. |

(26)

APPENDIX B
PROOF OF LEMMA 2

Proof: First, suppose the following decomposition
H =P C(u;)P = [P,,, P,,]"C(w;) [P, P,]
_ [PLC(w;)P,, PLC(u,)P,
B PZC(UI‘)P"L PZC(ui)Pn

H’Hl Hl’rI):Ln
Hmn H'I’L ’

27

where P € R(PTDX(P+D) i an orthonormal matrix, P, e
RPHDX™ and P, € RPHIXDP+1=m) are two sub-matrices
of P, and H,,,, € R(PHI=m)xm pag only one nonzero entry
on its top-right corner, i.e., H,,,(1,m) = S,,+1. Given the
above decomposition, we show the proofs of the upper bound
on Te(C(ui){’i, 5\1{’1), max; |)\z — 5\1|, and mini ‘)\l — 5\Z|, re-
spectively.
1) We compute

[C(w)V; — A¥ill2 = [ C(u)Prudti — i Pcs|2
= |P"C(w;)Pna; — 9P Pqi2

Hy,q | | Vi
(a)

2

b (c)
© 8 i1l (m)] < Brosr, 28)
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where (a) follows from the fact that H,,q; = 9;q;, (b) holds
because of the special structure of H,,,, in (27), and (¢) is due
to the fact that q; is unit norm.

X ~ T
ii) Defining H £ [}Em I;) JandH £ [HO Hg"],wehave

H = H + H and the eigenvalues of H include the eigenvalues
of H,,,i.e., ¥, ...,9,,. Then, based on the perturbation theory
[48], we obtain

X — il < [[Hlz = [[Honll2 = Bt
iii) Since v; = (C(u;) — \I)"H(C(u;) — \I)v; when \; #
i, Vi, the following holds
1= [lvil2 < [(C(u;) = AI) 2| C(w)¥i — \ivill2. (29)

By assuming that C(w;) = VcAcVE  where

diag([A1, ..., Aps1]T), we have
I(C(w) =AD" 2 = [[Ve(Ac — ML) ' VE
1

= 30

Ac =

By substituting (30) into (29), we obtain

min [A; — Ai| < 7e(C(w) Vi, \ivi) = [|C(w) Vi — Aivi|2

= Bm+1lai(m)],

where the last equality is due to (28).
This concludes the proof. |

APPENDIX C
PROOF OF LEMMA 2

Proof: According to Algorithm 5, we have
Bi+1 = [[C(ui)p; — Bjpj-1 — a;pjll2
< |[[C(wi)p; — a;pjll2 + By,

where the inequality follows from the triangle inequality and the
fact that p;_; is unit norm. Then,

m

Brmt1 < Z [(C(u;) — a;I)psll2

<
=

M

<
I
—

amaX(C(ui) — Ole)

(Urnax (C (ui)) + Omax (aj I))

<.
Il
—

MOmax (C(w;)) + Z |o;

S QmUIIlaX(C(u’i))7 (31)

where the last inequality is due to |oy| = |pJTC(ui)pj| <
Omax(C(w;)), j =1,...,m.

By introducing a normalized Minkowski
. D D .
Omax,Minkowski £ %ﬂ e:—ql Zj:_ll |C(€7])|

f1-norm
[54], [57],

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

which is an approximation of o,,x(C(u;)), we obtain

ﬂm—i—l < 2m(0'max(c(ui)) - &maX,Minkowski)
+ 2ﬁ/né—max,Minkowski
S 2m ((Jmax,UB - Umax,LB) + &max,Minkowski) )

where the last inequality stems from the fact that oy,ax,1.B

UmaX(C(ui)) S Omax,UB and Omax,LB S &max,Minkowski
Omax,UB [94], [58]. This concludes the proof.
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